§ 35.17 ### §35.17 Materials. The suitability and durability of materials used in the propeller must— - (a) Be established on the basis of experience or tests; and - (b) Conform to approved specifications (such as industry or military specifications, or Technical Standard Orders) that ensure their having the strength and other properties assumed in the design data. (Secs. 313(a), 601, and 603, 72 Stat. 752, 775, 49 U.S.C. 1354(a), 1421, and 1423; sec. 6(c), 49 U.S.C. 1655(c)) [Amdt. 35-4, 42 FR 15047, Mar. 17, 1977] #### §35.19 Durability. Each part of the propeller must be designed and constructed to minimize the development of any unsafe condition of the propeller between overhaul periods. # $\S 35.21$ Reversible propellers. A reversible propeller must be adaptable for use with a reversing system in an airplane so that no single failure or malfunction in that system during normal or emergency operation will result in unwanted travel of the propeller blades to a position substantially below the normal flight low-pitch stop. Failure of structural elements need not be considered if the occurrence of such a failure is expected to be extremely remote. For the purposes of this section the term "reversing system" means that part of the complete reversing system that is in the propeller itself and those other parts that are supplied by the applicant for installation in the aircraft. ### § 35.23 Pitch control and indication. - (a) No loss of normal propeller pitch control may cause hazardous overspeeding of the propeller under intended operating conditions. - (b) Each pitch control system that is within the propeller, or supplied with the propeller, and that uses engine oil for feathering, must incorporate means to override or bypass the normally operative hydraulic system components so as to allow feathering if those components fail or malfunction. - (c) Each propeller approved for installation on a turbopropeller engine must incorporate a provision for an indicator to indicate when the propeller blade angle is below the flight low pitch position. The provision must directly sense the blade position and be arranged to cause an indicator to indicate that the blade angle is below the flight low pitch position before the blade moves more than 8° below the flight low pitch stop. [Amdt. 35–2, 32 FR 3737, Mar. 4, 1967, as amended by Amdt. 35–5, 45 FR 60182, Sept. 11, 1980] ## Subpart C—Tests and Inspections ### §35.31 Applicability. This subpart prescribes the tests and inspections for propellers and their essential accessories. ### §35.33 General. - (a) Each applicant must show that the propeller concerned and its essential accessories complete the tests and inspections of this subpart without evidence of failure or malfunction. - (b) Each applicant must furnish testing facilities, including equipment, and competent personnel, to conduct the required tests. ### §35.35 Blade retention test. The hub and blade retention arrangement of propellers with detachable blades must be subjected to a centrifugal load of twice the maximum centrifugal force to which the propeller would be subjected during operations within the limitations established for the propeller. This may be done by either a whirl test or a static pull test. (Secs. 313(a), 601, and 603, 72 Stat. 752, 775, 49 U.S.C. 1354(a), 1421, and 1423; sec. 6(c), 49 U.S.C. 1655(c)) [Amdt. 35-4, 42 FR 15047, Mar. 17, 1977] ### §35.37 Fatigue limit tests. A fatigue evalution must be made and the fatigue limits determined for each metallic hub and blade, and each primary load carrying metal component of nonmetallic blades. The fatigue evaluation must include consideration of all reasonably foreseeable vibration load patterns. The fatigue limits must account for the permissible service deteriortion (such as nicks, grooves,